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Specific Heats (C,) of Saturated and Compressed
Liquid and Vapor Carbon Dioxide

J. W. Magee' and J. F. Ely!
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Specific heats of saturated liquid carbon dioxide (C,,,) have been measured in
the temperature range 220 to 303 K. Specific heats at constant volume (C,) have
been measured at 12 densities ranging from 0.2 to 2.5 times the critical density
in the temperature range 233 to 330 K, with pressures varying from 3.4 to
32 MPa. The measurements have been conducted in an adiabatic constant-
volume calorimeter of conventional design. Uncertainty of the specific heats is
estimated to not exceed 2.0%. Comparisons are made with an extended
Benedict-Webb-Rubin equation of state and with the results of other workers.

KEY WORDS: adiabatic calorimetry; carbon dioxide; heat capacity; high
pressure; saturated liquid.

1. INTRODUCTION

Thermodynamic properties of a fluid may be calculated from a knowledge
of its ideal-gas properties along with an accurate representation of its PV'7T
surface. Specific heats derived in this manner, however, often lack sufficient
accuracy since the calculation involves integration of isochoric curvature
(62P/0T?),. This quantity is known to possess small absolute values except
in the vicinity of the critical point and is very difficult to measure
accurately. In the case of compressed liquid states (p>2p.), additional
data are required including the vapor pressure and enthalpy of
vaporization or specific heat of the saturated liquid. Direct measurements
of specific heats provide useful checks on calculated specific heats when
they are available along a path traversing the temperature range of interest.

In this work the specific heats of the saturated liquid (C,,,) have been
measured over a range of temperatures traversing the entire coexistence
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region, 220 to 303 K. In addition, single-phase specific heats (C,) have
been measured on 12 isochores from 2.0 to 26.0 mol-dm~* with tem-
peratures from 233 to 330 K and pressures up to 32 MPa. It is believed
that these data are the most comprehensive specific heats available for the
saturated liquid, compressed liquid, and compressed vapor carbon dioxide.
Previous specific heat data for carbon dioxide have been summarized in an
extensive IUPAC publication [1]. Of the previous investigations, the most
comprehensive is due to Amirkhanov et al. [2], who conducted
masurements from 276.15 to 403.15K on densities from 8.81 to 20.79
mol-dm ~? in both the single- and the two-phase regions. An overall
accuracy of 2 to 4% was assigned to the specific heats. Unfortunately, the
range of densities used by Amirkhanov et al. was limited. No dilute vapor
or compressed liquid isochores are reported. Also, no saturatd liquid
specific heats are reported below 276.15K. The objective of our
investigation is to extend the density range of carbon dioxide specific heat
data.

2. APPARATUS AND PROCEDURES

The method by which the specific heat was measured was to observe
the temperature rise A7 when a carefully measured thermal energy Q was
supplied to a calorimeter filled with a known amount of substance N.
When the heat capacity of the empty calorimeter C, is subtracted, the
desired specific heat is obtained from

C=Q/NAT— Co/N (1)

Thus values for Q, N, and 4T are required.

The apparatus used in this work is a constant volume adiabatic
calorimeter described in detail by Goodwin [3]. Figure 1 illustrates the
apparatus. The principal components of the calorimeter are a spherical
bomb with a 72-cm® (nominal) volume, a fine-diameter (0.015-cm) filling
capillary, a guard ring, an adiabatic shield, and a platinum resistance ther-
mometer. The calorimeter bomb is constructed of type 316 stainless steel
and has a S5-cm internal diameter and a wall thickness of ca. 0.16 cm. A
100-2 constantan wire heater is wound on the outer surface of the sphere.
The heater wire is varnished onto the surface and surrounded by a
lightweight cylindrical copper case which shields the heater from its
surroundings and serves also as an anchor for two thermopiles used in
heater power control circuits which automatically maintain temperature
equality between the bomb and the surrounding guard ring and adiabatic
shield. A capsule-type platinum resistance thermometer is encased in a
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Fig. 1. Principal components of adiabatic calorimeter.

sheath, filled with Woods metal, welded to the bottom of the bomb. The
resistance thermometer, calibrated by the NBS Temperature Section on the
IPTS-68 scale, has leads attached to a six-dial potentiometer. At the top of
an 82-cm capillary is a stainless-steel valve which seals the sample fluid in
the calorimeter volume. An electronic counter is used to measure the
heating period. A 600-s heating period was used, resulting in a temperature
increment ranging from 1 to 12 K, depending on the heater current, which
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is variable from 0.05 to 0.15A. A pair of potentiometers provided for
nearly simultaneous readings of the potential and current applied to the
heater.

The amount of sample in the calorimeter when the filling valve was
sealed could be established by either of two methods. First, as in previous
investigations [4, 5], the sample temperature T and pressure P were obser-
ved with the valve in the filling capillary cracked open. The amount of sam-
ple was obtained from a bomb volume [4] at the filling conditions
Ve(P, T) and density p(P, T) derived from an equation of state [6].
Second, a gravimetric method was also used. In this procedure, liquified
carbon dixide was permitted to drip from a 500-cm® aluminum weighing
cylinder into the filling capillary until the calorimeter was filied. The filling
pressure was fixed by the vapor pressure of liquid carbon dioxide at
ambient temperature. The bomb temperature was then adjusted to obtain a
desired filling density. When the filling valve had been sealed, the weighing
cylinder was inverted and immersed in liquid nitrogen to ensure no mass
losses. At a sublimation pressure below 10~% MPa the weighing cylinder
valve was tighly closed. The mass of the sample was determined from a
weighing of the cylinder and contents prior to and after charging.

After the calorimeter had been filled to the desired density in the
single-phase region, the apparatus was cooled to near the triple point. Each
measurement sequence commenced in the two-phase region and continued
through the coexistence boundary, where a sharp drop in specific heat was
observed for each filling. Two-phase specific heats C,® were obtained from
primary data after corrections for PV work done by the sample fluid and
for vaporization were applied [4]. Values of specific heat of the saturated
liquid C,,, were derived from C,* measurements for each liquid isochore
measured. Measurements of  and 4T were continued into the single-phase
region until the upper limit of temperature (330 K) or pressure (35 MPa)
was obtained. Values of C, were obtained when adjustments were applied
to the primary data for PV work [5] done by the sample. These
adjustments were required since the sample holder is a thin stainless-steel
sphere which stretches as the pressure increases.

The samples were taken from a cylinder of high-purity carbon dioxide
having a mole fraction purity of 0.9999 as certified by the suplier. In-house
gas chromatography revealed the presence of trace quantities of light
gases—primarily nitrogen and oxygen. The average purity of 14 samples
was determined to be 0.999946 mol fraction carbon dioxide.
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3. RESULTS AND DISCUSSION

The amount of substance loaded was determined from carbon
dioxide’s PVT surface at the conditions before the filling capillary valve
was sealed or, alternatively, by direct measurement of the sample mass
using a gravimetric method. Table I presents each run identification, with
all pertinent data on the filling conditions. Runs 900, 1000, and 1100
employed the gravimetric method. All other runs used measurements of the
pressure and temperature to obtain density from a 32-term extended
Benedict~Webb—Rubin equation of state [6].

3.1. The Specific Heats (C,,,) of Saturated Liquid Carbon Dioxide

Specific-heat measurements commenced in the liquid—vapor region at
a temperature just above the triple point for each of the 12 isochores. Two-
phase specific heats [C,*] were measured from ca. 217K to each
isochore’s saturation temperature. The experimental values are presented in
Table II. Two-phase specific heats were observed to increase with tem-
perature up to the coxistence boundary, where a discontinuous drop to a
single-phase value of the specific heat occurred. Table II furnishes details of
the primary measurements and adjustments applied to the experimental

Table 1. Calorimeter Loading Conditions for the Experimental Runs

Calorimeter Total
Run Pressure  Temperature  Density Mass volume sample
No. (MPa) (K) (mol-dm~?) (g) (cm?) {mol)
100 10.794 330.462 8.363 73.558 0.6163
400 12.909 330.646 12.110 73.584 0.8924
500 15.304 333.450 13.960 73.622 1.0291
600 17.532 329.260 16.102 73.635 1.1870
700 9.8197 300.639 18.021 73.443 1.3248
800 10.594 290.417 20.046 73.417 1.4730
900 6.1859 270.008 22.149 71.500 73.298 1.6247
1000 6.2867 251.499 23.951 77.251¢ 73.238 1.7553
1100 6.0724 228.902 25.980 83.705% 73.162 1.9020
1200 4.5219 330.202 2.002 73.482 0.1473
1300 9.3170 329.930 6.024 73.538 0.4442
1400 7.5855 330.210 4.113 73.518 0.3035

“Mass of discharge, 77.222g (—0.038 % difference).
®Mass of discharge, 83.695 g (—0.012% difference).
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data. A consistency test was applied to the C,/® data via the relation of
Yang and Yang [7]. For coexisting phases the relation is

C,D/T= —3*G/oT* + p~'0°P , /0T (2)

where G is the Gibbs free energy per mole and p is the average filling den-
sity. According to Eq. (2) self-consistent specific-heat data C,® should be
represented by a straight line when ploted versus the reciprocal of density
along isotherms. Interpolation of C, measurements to even temperatures
was accomplished by fitting the function,

C2=A4+BT+CT’+ DT’ +ET[T,— T]~**° 3)

to individual isochores and subsequently calculating interpolated values.
Figure 2 demonstrates the linearity of C,® with p~! at 230, 240, 250, 260,
270, and 280 K. Values of vapor pressure curvature 6°P,,,/0T% were extrac-
ted from linear least-squares fits of these isotherms. The results are given in
Table III. Also shown in TableIII is a comparison between these
experimenal results and the values predicted by Ely [8] which derive from
published vapor pressures. The two sets of numbers show a remarkably

120 I
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Fig. 2. Variation of two-phase specific heats of carbon dioxide with molar volume.
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Table ITI. Comparison of Vapor Pressure Second Derivative (d?P,,/dT?) Derived from
Specific-Heat Measurements with a Vapor Pressure Equation [8]

d*P,/dT?
(MPa-K~2)
T
(K) This work Elyetal. [8]
230 1.05x 103 9.54x 10~*
240 1.18x 103 1.13x 1073
250 1.35x 103 1.31x 1073
260 1.53x 103 1.51 %1072
270 1.75x 1073 1.73x 1073
280 1.98x 103 1.98x10-*

good agreement. Deviations diminish with increasing temperature, until at
280 K we observe exact agreement.

An important quantity for thermodynamic calculations of compressed
liquid states is the specific heat of the saturated liquid (Cg,,). At densities
greater than critical, our C,'® measurements were used to compute values
of the specific heat of the saturated liquid via the thermodynamic
relationship [91],

Coar=C, 2 = TP 0 (0P sa/ OTHOP o/ OT) + T[psu™" — p ' 1(0?P0i/0T) (4)

For eight liquid isochores these values are presented in Table IT and are
graphed in Fig. 3 versus the saturation temperature. An analytic represen-
tation of the temperature dependence of C,,, is particularly useful for ther-
modynamic calculations. Consequently, our specific heats of the saturated
liquid have been fit to the equation

CS?H:CI+C2T+C3T2+C4T3+C5T[TC_T]"OAZ (5)

where the exponent (—0.42) is the best empirical value for Eq. (5) but has
no basis in scaling theory. A weighted linear least-squares routine was
employed. Weights were selected which reflect the relative size of the
adjustment made to each original C,”® datum and are given by

Wt =Abs[(C,, — C,?)/C,>]! (6)

The resulting coefficients of Eq. (5) are given in Table IV. Values calculated
at experimental temperatures and their percentage deviations are presented
in Table IT with the original data. The solid line in Fig. 2 passes through
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400,

12.1 mol-dm™
14.0 mol-dm™
16.2 mol-dm™
18.0 mot-dm™?
20.1 mokdm™ -
22.2 mol-dm™

24.0 mok-dm™3

26.0 mol-dm™3
Amirkhanoyv, et al.

—— Weighted least square fit

3001—

® 0640 & xD>OO

200— —

SPECIFIC HEAT, Cgat ,J*mot K"

1]
220 240 260 280 300 320
T,K

Fig. 3. Saturated liquid specific heats of carbon dioxide. (——) Weighted least square
fit; (@) Amirkhanov et al. [2].

values calculated by Eq. (5). The small deviations furnish evidence of the
excellent internal consistency of these measurements. The weighted root
mean square deviation given by

RMS = 100 [Z (AC0/Coar)? Wt / 5 Wt:Il/z (7)

is 0.24 %. Owing to the scarcity of data in the vicinity of the critical point
and the higher relative errors of near-critical data, we state the range of
reliability of Eq. (5) to be 220 to 300 K.

3.2. The Specific Heats (C,) of Compressed Vapor and
Liquid Carbon Dioxide

Table V presents single-phase specific heats (C,) for 12 isochores
ranging from 2.0 to 26.0 mol-dm~>. They are plotted in Fig. 4. In Table V
we furnish the basic calorimetric measurements and adjustments leading to
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Table IV. Coefficients C, for Eq. (5)

Equation®: C,, = C, + C, T+ C; T2+ C, T3+ Cs T(T, — T) %

C, =0.15929 x 10*
C,= —0.18876 x 102
C3=0.77482 x 10!
Cy= —0.10847 x 103
C5=0.14952 x 10!

@ Critical temperature, 7.=30421 K [1].
> Dimensions of Cg,: J-mol~!1- KL

C, values. A comparison has been made with specific heats calculated from
ideal-gas heat capacities and an equation of state via the relation

CT, p)= CUT) =T | (@°PJaT*), dp/p* (8)

A correlation developed by Ely [6, 8] was used in the computations. The
integral in Eq. (8) was calculated with a 32-term extended Benedict—-Webb—
Rubin equation of state. Included in the sources of data used to develop this
correlation were spectroscopically derived ideal-gas heat capacities, various
sources of PVT data, and the specific heat data of Amirkhanov et al. [2].
Agreement between measured and calculated specific heats is generally
acceptable, except in the critical region, where an analytic equation of state
cannot be expected to reproduce the nonanalytic behavior observed
experimentally. In addition, this correlation fails to give an acceptable
agreement with measured specific heats close to the coexistence boundary.
A large part of the discrepancy can be assigned to uncertainties in
calculating the derivative (8°P/6T%)p from the PVT surface. The dis-
crepancy reduces, as expected, as we depart from the coexistence boundary.

3.3. Comparison with Published Specific Heats

The published specific heat data for carbon dioxide have been
critically reviewed by Angus et al. [1]. Of these data, those due to
Amirkhanov et al. [2] are perhaps the most comprehensive. Since their
isochores are at different densities from those in this work, a direct com-
parison of C, measurements is quite difficult if not impossible. However,
data which fall on a univariant locus, such as the specific heat of the
saturated liquid, furnish a means of comparison. For this purpose, the 324
published C, data of Amirkhanov et al. were adjusted via Eq. (4) to
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Fig. 4. Single-phase specific heats of carbon dioxide.

obtain values for C,,. Selected values computed in this way are plotted as
filled circles in Fig. 3. Although the C,,, values derived from Amirkhanov et
al. cover a more limited range of temperatures (276.15K <7< T.), the
plot demonstrates that their data deviate substantially from our work. The
deviations are strongly biased, as shown. In the temperature range from
276.15 to 300K, 260 C,,, values result in a 1.9% root mean square
deviation from Eq. (5). All 260 C,,, deviations fell within the 2 to 4%
accuracy claimed by Amirkhanov et al.

4. UNCERTAINTIES

Overall accuracy of the specific heat measurement is limited by the
uncertainty of 47 and C,. The temperature increment A7 is evaluated at
the midpoint of the heating cycle by extrapolating temperature drift rates
measured immediately prior to heating and following a 20-min period
allowed for thermal equilibration. Its uncertainty ranges from 0.001 to
0.005 K. This uncertainty translates into a 0.1 % uncertainty in C, for a AT
of 5 K but increases to 0.5 % in the vicinity of the critical point, where tem-
perature intervals were of the order of 1 K. The heat capacity of the empty
calorimeter C, was determined by previous experiments [ 107] and found to
have a precision of about 0.07% and an estimated uncertainty of 0.1 %. In
our calculations of C,, the C, value must be subtracted from the basic
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calorimetric measurement Q/47. When the net is divided by the amount of
sample, we are left with the specific heat of the sample. An important con-
sideration is the fraction of the total heat capacity due to the sample. In
our single-phase experiments this quantity varied from 49% in the com-
pressed liquid to only 6% in the dilute vapor. The corresponding uncer-
tainty in the specific heat ranges from 0.09 to 1.6 % due to the imprecision
of C,.

To a lesser degree, the imprecision in experimental specific heats
depends on uncertainties in applied energy Q and amount of sample N.
The power supplied to the heater was obtained from nearly simultaneous
readings of the potential and current applied to the calorimeter heater.
Heater power was observed to be constant to better than 0.01%. A poten-
tial source of error in Q is heat leak to or from the sample holder during a
heating period. The shield temperature lags behind the sample holder tem-
perature by 0.02 K at the onset of heating. After the power is turned off, the
sample temperature lags behind the shield temperature. As observed from
chart recordings of the bomb-shield thermopile emf, the area under a
(Tooms — Tiniera) Curve at the beginning of a heating period equals the area
under a similar curve following the heating period [10]. The two lags com-
pensate to produce a nearly adiabatic environment over the course of a
measurement sequence. Earlier measurements of the thermal resistance
between the sample holder and the shield have established that adjustments
to the applied energy Q for this effect are negligible in all cases [117]. The
time of the heating period was measured by an electronic counter triggered
by the potential across the calorimeter heater. The accuracy of the time
"interval is better than 0.001 %, leading to an estimated uncertainty of better
than 0.011% in the electrical energy supplied to the calorimeter. The
accuracy of the amount of sample in the bomb depends on the method
used to load the calorimeter. In one method, the pressure and temperature
during filling are measured, the corresponding density is derived from an
equation of state, and the moles of sample are evaluated from a calibration
of the calorimeter volume. This leads to an uncertainty of 0.1%. For runs
90, 1000, and 1100 a gravimetric method was used to measure the mass
loaded into the calorimeter from a weighing cylinder. The mass
measurements were conducted on a high-precision balance for which a
standard deviation of 0.00051 g was typical. The uncertainty of the
gravimetric procedure was obtained by weighing the mass discharged
following runs 1000 and 1100. Close agreement was obtained with the mass
of sample loaded into the calorimeter. The average error for a single
loading is estimated to be 0.01%, a factor of 10 improvement over the
other procedure. The cumulative error in the specific heats from all sources
is estimated to be lower than 2% in the vapor and 0.5% in the liquid.
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